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Abstract— Visual question answering (VQA) that involves
understanding an image and paired questions develops very
quickly with the boost of deep learning in relevant research
fields, such as natural language processing and computer vision.
Existing works highly rely on the knowledge of the data set.
However, some questions require more professional cues other
than the data set knowledge to answer questions correctly.
To address such an issue, we propose a novel framework named
a knowledge-based augmentation network (KAN) for VQA.
We introduce object-related open-domain knowledge to assist the
question answering. Concretely, we extract more visual informa-
tion from images and introduce a knowledge graph to provide the
necessary common sense or experience for the reasoning process.
For these two augmented inputs, we design an attention module
that can adjust itself according to the specific questions, such that
the importance of external knowledge against detected objects
can be balanced adaptively. Extensive experiments show that our
KAN achieves state-of-the-art performance on three challenging
VQA data sets, i.e., VQA v2, VQA-CP v2, and FVQA. In addition,
our open-domain knowledge is also beneficial to VQA baselines.
Code is available at https://github.com/yyyanglz/KAN.

Index Terms— Knowledge base, object detection, self-attention,
visual question answering (VQA).

I. INTRODUCTION

V ISUAL question answering (VQA) [1]–[4] is a
cross-modality task that combines computer vision

(CV) [5], [6] and natural language processing (NLP) [7], [8].
Such a cross-modality task requires understanding not only
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the content of visual inputs but also the contextual knowledge
expressed by questions. In particular, given a picture and
a question based on the picture in natural language, the
VQA task needs to integrate both visual features and semantic
context to give a correct answer. However, such a task requires
a comprehensive understanding of both visual and linguistic
components. The right answer can be produced only when
both of them infer correctly.

For multimodality feature representation, previous works get
accustomed to use visual feature extracted by convolutional
neural network (CNN) [42], e.g., VGG [9] and ResNet [6].
With further development, Anderson et al. [3] proposed a
novel feature extraction method in vision and language tasks,
which can extract more representative features to promote the
performance. Especially, they used an object detection model,
Faster R-CNN, to detect instances of objects belonging to
certain classes and localize them with corresponding coor-
dinates in bounding boxes. Also, they used the method to
win first place in the 2017 VQA Challenge. On the other
hand, the semantic feature of questions is achieved with
word embedding, which was pretrained [10]. The role of
word embedding is to convert every single word to a high
dimension vector, where semantic similarities are represented
by distances. To get the contextual feature of the whole
question, the set of the word embeddings is then sent into
a recurrent neural network (RNN) [11], [46].

Even though VQA has drawn plenty of attention these
years, some critical challenges still need to be solved. For
multimodality feature fusion, most existing methods focus on
the fusion with different modalities, i.e., visual features from
images and semantic features from questions. The typically
used fusion method, attention mechanism, is utilized to obtain
the corresponding relationships between object regions on
images and words from questions [43]. For instance, previ-
ous work coattention [12] learns the most relevant relations
between object region and question word pairs to obtain the
right answers. Also, some works explore the relation in a
single modality, e.g., language modality. The BERT model [8]
grabs the relations between word-to-word pairs from the
question by the self-attention mechanism. When the fusion
mechanism deals with two or more kinds of modalities,
the current methods struggle to balance the impact among
these kinds of modality features.

In addition, for image inputs, there are no links or relation-
ships between the object features extracted by Faster R-CNN.
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Fig. 1. Object words of questions and images are used to search related
knowledge from ConceptNet [16]. For example, the queried knowledge of the
object words “apple” and “knife” is related closely. The related knowledge is
also helpful to answer the question “Why is there a knife on the apple?”

Previous methods, such as graph network [13]–[15], can
capture the relationship between objects. However, the graph
network is hard to converge in the training stage, and the
current performance of these methods is not as good as
expected. Moreover, for some questions concerned with logical
reasoning, errors in answers occur as images only hold visual
information and contain no relevant knowledge.

To solve such problems, we propose a novel knowledge-
based augmentation network (KAN) structure that can balance
the weight of extra knowledge and detected objects adap-
tively. First, the additional visual feature is extracted from
the image to inform our model with more tiny objects, some
of which barely draw any attention in previous methods.
Second, we simulate the deposit of knowledge in human
brains so that we provide necessary external knowledge from
a large-scale knowledge base ConceptNet [16]. ConceptNet,
which contains links between entities and the related facts,
compensates for extraneous data for images that may alone
lack sufficient information. Different from the knowledge base
in [17], we employ ConceptNet to obtain external knowledge
with labeled relationships and reliability scores. It is not
proper to treat visual features and knowledge information
indiscriminately when we integrate them to obtain the answer.
Consequently, we carefully design an adaptive score attention
module that, for different questions, it automatically adjusts
the importance of information feeding to the model between
rich visual cues and the extra knowledge base. Especially, for
a question on logical reasoning, the adaptive score attention
module allocates more weights to external knowledge. How-
ever, for a question concerned about the color or number of
specific objects on the image, the module prefers to assign
more attention to visual features. Through the adaptive score
attention module, our model leverages images with external
knowledge by a more exhausted mode so that it delivers better
accuracy upon some special questions. Our contributions are
summarized as follows:

1) We introduce an external knowledge base to enrich the
training knowledge base, which provides a more com-
mon sense that is absent in the training knowledge base.

It helps to answer some specific and professional ques-
tions about reasoning based on facts or experience.

2) We adopt adaptive score attention, which can automat-
ically choose whether we use external knowledge or
current image representations, to assist in answering the
question.

3) Extensive experiments are conducted on three challeng-
ing benchmarks (VQA v2, VQA-CP v2, and FVQA),
and experiment results show that our approach achieves
state-of-the-art performance. The effect of importance is
also well exploited in the ablation study.

II. RELATED WORKS

A. Visual Question Answering

In the early stage of VQA research [2], [18], [19], a CNN
is usually utilized to extract global features of an image, and
the corresponding question is fed into LSTM networks [20] to
prepare contextual features. Cross-modality models [21], [22],
on the other hand, try to combine these two inputs for the
question answering. Visual features are composed of multiple
grids that have the same shapes and sizes with each grid
cell containing only partial data of objects [23]. Therefore,
spatial grid features can cause loss of visual information
inevitably. Anderson et al. [3] proposed a bottom–up attention
mechanism that extracts features on the level of object region
from an image, which successfully maintains the whole objects
information. However, the visual features on object regions are
still not fully utilized as they lack internal links.

B. Self-Attention

The attention mechanism [7], [24] is early employed
in NLP tasks and then adopted in CV fields [25].
Vaswani et al. [26] proposed a self-attention approach based on
the original attention so that they can weight different positions
in a sequence with different importances. Yu et al. [27]
leveraged the self-attention mechanism to deal with cor-
relations among different object regions and relationships
between different word sequences. Yu et al. [28] combined
self-attention to propose a new method in the field of dense
video captioning that can use nonrecurrent structure to encode
generated sentences to improve the performance.

C. External Knowledge Base

The external knowledge has been wildly adopted not only
in the NLP [29]–[31] but also in the field of CV tasks [32].
Many large-scale common knowledge bases are available,
such as YAGO2 [33], DBpedia [34], and ConceptNet [16].
Wu et al. [17] extracted knowledge relevant to the corre-
sponding image from DBpedia and directly feed external
knowledge combined with visual features into their model.
External knowledge that has connections with objects in an
image is also extracted by Gu et al. [35] from ConceptNet
and is combined with the image to generate a scene graph.

Different from the works in [17] and [32], we employ Con-
ceptNet as our external knowledge base in our work, which is a
freely available knowledge base. ConceptNet provides various
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Fig. 2. Framework of the whole KAN. First, the question feature processed by GloVe word embedding and LSTM passes through the CAM to get the attended
question feature. Then, the attended question feature and visual feature from images pass through the top EAM to obtain the attended visual feature. External
knowledge is queried through ConceptNet, and the attended knowledge feature is obtained by the bottom EAM as earlier. The attended visual feature and the
attended knowledge feature get balanced attention by the impact to the question through the adaptive score attention module. The balanced knowledge–image
feature and semantic feature of questions are sent into the classifier to gain the final answer.

labeled relationships to connect entities, and the knowledge is
connected with these labeled relationships to present capability
and features of entities. In ConceptNet, a score is attached
to measure the reliability degree of knowledge. In addition,
we design a filtering method to pick valuable knowledge
with the reliability score. Concretely, we sort the queried
knowledge of entities and only obtain the knowledge with a
high reality score. However, DBpedia, which is the knowledge
base employed in [17], has no features mentioned earlier.
DBpedia fetches structural data based on Wikipedia terms with
richer information but less focus.

In addition, we design a separate module called the knowl-
edge edge attention module (KEAM). VQA is a task that
answers a specific question, and during the process of infer-
encing, we utilize the single module KEAM to deal with the
relationship between external knowledge and question, which
can extract principal information from external knowledge
effectively and specifically. In [17] and [32], there is no single
module to handle external knowledge and only one module to
deal with the relationship between external knowledge, image,
and question.

III. OUR METHOD

In this article, we aim to efficiently extract rich knowledge
features and then improve the fusion of knowledge and object
representation to provide an accurate answer. Our proposed
framework (KAN) is shown in Fig. 2, which consists of:
1) a feature extraction module that extracts detailed image fea-
ture and question feature; 2) external knowledge that provides
a more common sense that is absent in the training image and
question pairs; 3) base attention modules that include central

attention and edge attention module (EAM); and 4) adaptive
score attention module that balances the weight of extra
knowledge and detected objects. In the following, we present
the details of the abovementioned four major components.

A. Feature Extraction Module

In this section, we introduce the first component, namely,
the feature extraction module, which obtains two kinds of
features.

1) Image Feature: The previous method extracted the adap-
tive number of object regions from each image, which may
cause the loss of some key information [3]. The information of
the object region below an adaptive threshold holds beneficial
knowledge for the model. Here, we adopt the fixed-size
object region features. Especially, we use Faster R-CNN [36]
pretrained on the Visual Genome data set to obtain the
representations of an input image I by extracting fixed-M
object-based region vectors. This process can be formulated
as follows:

X = [X1, X2, . . . , XM] = f (I ), Xi ∈ Rm (1)

where Xi represents the i th object proposal feature, f (∗) indi-
cates the Faster R-CNN model, M is the number of the
object-based regions, and m stands for the dimension of each
object feature. Image features are represented as X ∈ Rm×M ,
m = 2048, and M = 100.

2) Question Feature: Given a question Q = [q1, q2, . . . ,
qN ], we first transform the question Q into a lower dimension
feature Q̂ with GloVe word embedding [10], [37]. Then,
we employ a single layer long short-term memory (LSTM)
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to encode the word embedding Q̂. For the i th step, the output
of hidden state is denoted as hi . To get the comprehensive
word-level question information, we obtain all the hidden state
with dimension n generated by the LSTM. Thus, the question
feature can be represented as Y ∈ Rn×N , n = 512, and
N = 14. We formulate this process as follows:

Q̂ = Glove(Q) = [q̂1, q̂2, . . . , q̂N] (2)

hi = LSTM(q̂i, hi−1), i ∈ [1, N] (3)

Y = [h1, h2, . . . , hN]. (4)

B. External Knowledge

1) Attribute and Object Extractor: While object region
features are gathered from images, Faster R-CNN is also
deployed to provide attribute labels and object labels for the
object region features

Attr = [Attr1, Attr2, . . . , AttrM ] = fa(I ) (5)

Obj = [Obj1, Obj2, . . . , ObjM ] = fo(I ) (6)

where Attr and Obj represent attribute labels and object labels
of images, respectively.

Object labels (e.g., window, banana, and sky) and attribute
labels (e.g., green, red, and wooden) have separate influences
on a model. Attributes provide decorations to objects, but the
presence of attributes, sometimes, confuses the inference of a
model. For example, if a question examines “what color the
t-shirt is?” by confronting “green” and “red” among processed
attribute labels, then the model is surrounded by unnecessary
noise with a high probability of confounding. Thus, we drop
the attributes that may distract a model to questions. Moreover,
most questions in VQA are relevant to objects in images.
If a question asks “Do both elephants have tusks?” then the
question concerns the real elephants in a certain image, which
requires some knowledge of elephants.

As most object labels from images are unrelated to
questions, noise object labels must be rejected by selection
according to the following two steps.

1) Only object labels that are present in the corresponding
questions are extracted. These object labels, annotated
as Oex, explicitly correlate to questions such that they
are serving to directly provide correct answers.

2) Although the most frequent object labels have no direct
relationships with the questions, they are also collected
to provide implicit connections to other objects inside
the questions, annotated as Oim.

As such, final object labels are composed of both explicit
and implicit object labels

O = {Oex, Oim}. (7)

2) Getting External Knowledge of Object Labels: To answer
questions involving images that lack the necessary common
sense, we leverage a large-scale knowledge graph from Con-
ceptNet with massive contextual information between real
objects inside. To be more precise, we query the knowl-
edge from both explicit object labels Oex and implicit object

labels Oim in ConceptNet. The knowledge includes the
following segments:

knowledge = {fact, w} (8)

where fact and w are the external knowledge and the corre-
sponding weight of an object label, respectively. One piece
of knowledge fact represents a descriptive statement, which
describes the attribute, common sense, or capability about an
entity word. Weight w stands for the degree that we can rely
on the corresponding piece of knowledge; a higher w value
means more confident dependence on the specific knowledge

fact = {O, R} (9)

where fact and R represent the knowledge and the correspond-
ing relationship against the object entity O, respectively. “fact”
is a sentence in a natural language format composed of a
relationship linking the object entity. To be concrete, the fact
also can be represented in natural language format as

fact = [s1, s2, . . . , sL ] (10)

where si is a single word in natural language.
Sentences in natural language format are discrete sequences

and, thus, cannot be directly utilized by the inference in our
model. To solve such a problem, word embedding is applied
to every single word within a sentence of knowledge to map
them into a continuous high-dimensional space. The linguistic
information is extracted as

Sl = Wssl , l ∈ [1, L] (11)

where Ws are learnable parameters and L is the length of
the sentence. After processed by word embedding, knowledge
only contains linguistic information but lacks contextual rela-
tionship. LSTM is deployed to generate context data relevance

hl = LSTM(Sl , hl−1) (12)

where hl is the hidden state of LSTM.
Finally, we sufficiently use each hidden state of hl instead

of taking the last hidden state hL to represent the knowledge
fact of the object

F = [h1, h2, . . . , hL] (13)

where F is a high-dimensional matrix, indicating the semantic
and contextual features of the knowledge.

C. Attention Module

1) Base Attention Unit: For various inputs, a detailed image,
a question, and the external knowledge, we design the attention
module to create a model that handles multiple sources of data
based on a cross-modality model called modular coattention
networks (MCANs) [27]. Our model is a symmetric modular
structure consisting of two sections: 1) one central attention
module (CAM) and 2) two edge-attention modules that are
shown in Fig. 3.

Both the CAM and the edge-attention module are stacked
with scaled dot-product attention [26]; thus, we first introduce
this fundamental module. The vector inputs of each layer
for scaled dot-product attention are duplicates of queries,
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Fig. 3. Two main attention modules in our base attention modules. Each attention module is composed of the scaled dot-product attention. (a) CAM takes
the question feature as input and outputs the attended question feature. (b) EAM takes the visual feature or knowledge feature as the first input and question
feature as the second input while outputs the attended visual feature or attended knowledge feature, respectively.

keys, and values, and their dimensions are dq , dk , and dv ,
respectively. For computational convenience, we let dq = dk =
dv = d and pack different queries, keys, and values together
into matrix Q, K, and V.

As a result, we transform the dot-product operation between
queries and keys into the multiplication of matrix Q and
matrix K followed by dividing a scaling factor, i.e., the value
of the square root of dk . Then, previous output is passed to
the softmax function, following which the attention weights
are obtained by multiplying matrix V:

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
V. (14)

Furthermore, to improve the expressive capability of the
attended features, we introduce multihead attention to collect
information from various feature subspaces

MH(Q, K, V) = concat(head1, . . . , headh)WO (15)

headt = Attention
(
QWQ

t , KWK
t , VWV

t

)
(16)

where WO ∈ Rd×d . WQ
t , WK

t , WV
t ∈ Rd×dh , dh = d/h,

d is the dimension of the query, key, and value, and h is the
number of the heads mentioned earlier. WQ

t , WK
t , and WV

t are
the learnable mapped matrices of the queries, the keys, and the
values of the t th headt, respectively.

2) Central Attention Module: Each layer of CAM is stacked
by G layers scaled dot-product attention. Its input question
feature is formulated as follows:

Y = [h1, h2, . . . , hN] ∈ Rn×N . (17)

Then, Q = K = V = Y, as shown in Fig. 3(left).
A softmax function is added to each layer’s output of the
scaled dot-product attention to learn the attention weight
between arbitrary question word yi and y j , and an attention

matrix is obtained. Next, we apply the attention matrix to
the question feature to produce the self-attended question
feature Yg, as shown in (14), which is used as the input of
the next scaled dot-product attention layer. This process is
formulated as

Yg = CAMg(Yg−1) (18)

where the initial input Y0 = Y and each CAM is a scaled
dot-product attention. The final output of the CAM is YG.

3) Edge Attention Module: EAM is merged by Image
EAM (IEAM) and KEAM. IEAM and KEAM share the same
model structure where each contains G stacked layers that
are composed of two layers of scaled dot-product attention.
Take IEAM for example, the input of IEAM coming from
the detailed visual feature X mentioned earlier plus the final
output named attended question feature YG from the CAM.
The first scaled dot-product attention in each layer of IEAM
with the same function as the single-layer CAM computes
self-attention of visual feature input X.

The second scaled dot-product attention is operated by a
softmax function to learn an attention weight matrix that
describes the correlation between the object region feature xi

and the question word feature y j . Consequently, the attention
matrix is applied to the attended question feature YG from
the last layer of CAM to output the question-based attended
image feature Xg, which is the input of the next layer of the
scaled dot-product attention. The pipeline is

Xg = IEAMg(Xg−1, YG) (19)

where the initial input X0 = X, and YG is the output of the
final layer from the CAM. The final G layers’ output of IEAM
is XG, which represents the attended image feature.
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Fig. 4. Adaptive score attention module. It balances the impact of attended
visual feature X and attended knowledge feature F according to the specific
question.

Similarly, the correlation between the external knowledge F
and the attended question feature YG is calculated through
G layers of KEAM

Fg = KEAMg(Fg−1, YG) (20)

where the initial input F0 = F, and YG is the output of the
final layer from the CAM. The final output FG of the G layers
in KEAM is the attended knowledge feature.

D. Adaptive Score Attention Module

The detailed visual feature X, the external knowledge F, and
the question feature Y are processed through our symmetric
modular model to compute the attended visual feature XG ,
the attended knowledge feature FG , and the attended question
feature YG .

When coming across different questions, the attended visual
feature XG and the attended knowledge feature FG have
flexible impacts at providing the correct answer to the specific
question. Indiscriminately utilizing these two source informa-
tion leads to a universal standard to extract hidden information,
thus a less exploit of rich visual information with the external
knowledge base. If a question focuses on the object and
scene in the image, for example, a question like “What color
is the umbrella?”, the detailed visual feature is expected to
present a correct answer. However, if a question needs more
knowledge to infer the right answer, say a question asks “Why
is the man on the street?” a more reasonable answer such as
“homeless” can be indicated with the guidance of extraneous
knowledge. Therefore, for different questions, visual feature
and knowledge feature play distinct roles.

Therefore, we carefully design an adaptive score attention
module, that to a specific question, automatically picks one
source information that is more suitable for providing an
accurate answer while treating the other as an auxiliary,
as shown in Fig. 4. First, we design a score function to
compute the scores for the detailed visual feature X and the
external knowledge F

S(X) = WX
2

(
tanh

(
WX

1 XG))
(21)

S(F) = WF
2

(
tanh

(
WF

1 FG))
(22)

where WX
1 ∈ Ro×m , WX

2 ∈ Ro×o, WF
1 ∈ Ro×n, WF

2 ∈
Ro×o, and all are learnable parameters. S(X) and S(F) are

TABLE I

VQA V2, VQA-CP V2, AND FVQA DATA SET STATISTICS. “#IMAGE”
DENOTES THE NUMBER OF IMAGES IN THE SPLITS, AND “#QA PAIR”

INDICATES THE NUMBER OF QUESTION–ANSWER

PAIRS IN THE CORRESPONDING SPLIT

indicators to depict how important the detailed image feature.
The external knowledge is

AX = σ(S(X) − S(F)) (23)

AF = 1 − AX (24)

U = AXX + AFF (25)

where σ is the sigmoid activation function, and AX is the
adaptive attention of detailed image feature XG, which is
computed by comparing the impacts of visual feature over
knowledge feature. AF is the adaptive attention of external
knowledge FG. U represents the merged fusion feature from
visual feature and knowledge feature by the adaptive attention
fed by AX combined with AF.

IV. EXPERIMENTS

In this section, we train our model on the large VQA data
set VQA v2 [38], newly proposed data set VQA-CP v2 [39],
and knowledge-based data set FVQA [40]. Moreover, various
experiments are conducted on the data set to validate the effec-
tiveness of our model. The results are compared with previous
state-of-the-art methods quantitatively and qualitatively.

A. Data Sets

1) VQA v2: VQA v2 is the most popularly adopted data set
of VQA tasks. It consists of three types of questions: Yes/No,
Number, and Other. 1106k human-annotated question–answer
pairs are included in the VQA v2 data set, within which
204k images come from Microsoft COCO data set. Every
image has three questions at least and 5.4 questions on
average. Each question has ten ground-truth answers annotated
by ten different people, where people who provide answers are
not the same as people who ask questions. The answers are
evaluated with the accuracy metric as follows [1]:

accuracy = min

(
#humans provided answer

3
, 1

)
(26)

where #humans provided answer means the number of
humans that provided the answer.

The data set is split into the training set, validation set,
and testing set, as shown in Table I. Besides, 25% of the
test set is sampled as the test-dev data set to evaluate the
performance of the model online, while a 100% test set is
denoted as the test-std data set to assess the performance of
the model comprehensively. All the results are reported based
on both the test-std and test-dev set.
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2) VQA-CP v2: VQA under changing priors (VQA-CP v2)
is the new split of the data set VQA v2. Compared with
VQA v2, VQA-CP v2 has changed the prior distributions of
answers in train and test splits to avoid models, giving the
most popular answer for the certain question type without
understanding image content. The train set of VQA-CP v2 has
121k images, 438k questions, and 4.4M answers, while the
test set has 98k images, 220k questions, and 2.2M answers,
as shown in Table I.

3) FVQA: Fact-based VQA (FVQA) is designed to intro-
duce supporting facts to help answer questions. Compared with
VQA v2 and VQA-CP v2, FVQA contains the corresponding
external knowledge, which was collected previously. However,
FVQA includes fewer images and questions. The train set of
FVQA has only 1100 images and 2927 corresponding ques-
tions, and the test set has 1090 images and 2899 corresponding
questions, as shown in Table I.

B. Implementation Details

In accordance with the consistency in the baseline model,
we adopt a multilayer structure similar to [12]. We set the num-
ber of layer G equal to 6, which has the best performance in
the experiment. Also, we set the number of candidate answer
words to 3129. The dimension d is 512 in multihead attention,
and the number of head h is 8. Therefore, the dimension of
each head is dh = d/h = 64.

In the training stage, we use Adam [41] optimizer with
β1 = 0.9 and β2 = 0.98. The warm-up learning rate is from
2.5e−5 to 1e−4 in the first four epochs, and the learning rate
keeps at 1e−4 from the fifth epoch to the tenth epoch. The
learning rate decays by factor 0.2 in every two epochs until
13 epochs. The batch size fixes as 64 in the training and
test stages. The dimension of visual feature is 2048 from
Faster R-CNN, while words in questions and knowledge are
encoded into a vector of dimension 300 with GloVe word
embedding, and word vectors are processed through LSTM
to get contextual vectors of dimension 512.

C. Detailed Image Feature

We take the finest VQA model MCANs as our experiment
baseline model. The visual input to the baseline model is the
image feature carrying ten to 100 object proposals extracted
from Faster R-CNN. The textual input is the question feature
processed through GloVe word embedding and LSTM. All our
experiments are validated through comparison to the baseline
model.

First, we set the number of object proposals for the image
feature as 100 to provide richer details inside an input image.
Table II shows the result of a different bounding box number.
When the number of the object proposal equals 100, 67.77%
on the validation set is provided, which is better compared
with the baseline model with 10 to 100 object proposals. After
the number of the object proposals is set to 50, the metric is
reduced to 67.00%, which is lower than the baseline’s 67.20%.

The experiment results in the first row of Table II represent
our baseline model MCAN’s performance, which covers 10
to 100 object proposals. The experiment results in the second

TABLE II

ABLATION STUDY FOR NUMBER OF OBJECT PROPOSAL BOUNDING
BOX IN BASELINE MODEL MCAN. ALL THE EXPERIMENT

RESULTS ARE CONDUCTED ON THE VALIDATION SET

row of Table II show the baseline model MCAN’s performance
with 100 object proposals. These two experiment results illus-
trate that more object proposals can improve the performance
of our model by bringing richer visual information. The third
row of Table II is the experiment result of the baseline model
MCAN’s performance with 50 object proposals. On the other
hand, a lower number of object proposals mean that the model
sees less and is possible to miss certain visual information,
which might hurt the final performance.

D. External Knowledge

In Section III-B, we introduce two kinds of external infor-
mation: 1) attribute and object information extracted from
Faster R-CNN and 2) knowledge of object labels extracted
from ConceptNet. To evaluate this external information,
we present the ablation study on VQA v2 in Table III. When
we employ the attribute and object information as our external
information, the experiment result is 67.67% on the valida-
tion set. On the other hand, when we adopt the knowledge
of object labels extracted from ConceptNet as our external
information, the experiment result is 67.87%. Comparatively
speaking, knowledge of object labels can bring more valuable
information to infer the correct answer.

External knowledge of object labels is extracted from a
large knowledge base ConceptNet. ConceptNet is a knowledge
graph that connects entity words in natural language with
labeled relations. ConceptNet has two types of relations, sym-
metric relations and asymmetric relations, and the total amount
of relations is 40. However, not all the relations are suitable
for compensating extra knowledge to the inference of the
model. For example, a relation called “Antonym” represents
the antonym of the word, and this helps little to the inference
process. Thus, we refine these 40 relations to select ones that
are capable to describe the characters, abilities of the entity
word, or relations linking two entity words.

The relations that we used in this article are divided into
three types: properties of entity words (e.g., HasProperty,
DefinedAs, IsA, HasA, and HasContext), the spatial location
of objects (e.g., AtLocation, LocatedNear, PartOf, and Sym-
bolOf), and the tendency of objects (e.g., MadeOf, UsedFor,
ReceivesAction, RelatedTo, CapableOf, and MannerOf).

When we do not introduce any knowledge from knowledge
graph ConceptNet, the experiment result of the baseline model
is 67.20% in the validation set, as shown in the first row
in Table IV. Moreover, through experimental comparisons,
we find that if the extracted number of explicit object labels
and implicit object labels K is set to 5, the performance
is the best 67.87%, as seen in the third row of Table IV.
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TABLE III

ABLATION STUDY FOR TWO KINDS OF EXTERNAL INFORMATION.
COMPARED WITH ATTRIBUTE AND OBJECT INFORMATION

EXTRACTED FROM FASTER R-CNN, KNOWLEDGE OF

OBJECT LABELS EXTRACTED FROM CONCEPTNET

OUTPERFORMS IN THE ABLATION STUDY

TABLE IV

ABLATION STUDY FOR THE NUMBER OF EXTERNAL KNOWLEDGE FROM

THE EXTERNAL KNOWLEDGE BASE. MCAN IN THE FIRST ROW
INDICATES THE BASELINE MODEL WITHOUT INTRODUCING ANY

KNOWLEDGE. OTHER ROWS INDICATE THE PERFORMANCE

OF THE BASELINE MODEL WITH A CERTAIN NUMBER
OF OBJECTS AND RELATIONS

When introducing more object labels by setting K equal to
10, the accuracy of the experiment decreases in the second
row. Although more detailed information is brought in, objects
related to the question are not as many as expected. More
labels include more disturbing information; thus, a negative
influence is added to the inference of our model. If the number
of object labels is set to 3, the experiment result drops to
67.82% because less information is exposed to the model,
which means the model can learn less common sense from the
knowledge graph. By contrast, the model might give plausible
answers when the model learns inadequately.

On the other hand, when the number of relations for each
object label R equals 2, we can get the best performance
67.87% in the experiment. If we introduce more relations
and set R equal to 5, the accuracy of the experiment instead
decreases, as shown in the fifth row in Table IV. Each knowl-
edge related to one entity word in ConceptNet has its weight,
which indicates the degree of the corresponding knowledge
that we can rely on. The knowledge weight of entity words
decreases when the number of knowledge increases. Some
knowledge with low scores does not help during the inference
process when introducing more knowledge; thus, the adverse
effect is produced instead.

E. Adaptive Score Attention Module

Further improvement can be obtained by sufficiently uti-
lizing attended knowledge features FG and attended visual
feature XG provided by the symmetric modulized network.
However, simply combining them provides constrained advan-
tages in the experiment. Three frequently used combination
methods between attended knowledge feature FG and attended
visual feature XG are employed in our experiments: con-
catenation, summation, and wise-product. The experimental
results are shown in Table V, where three easy combination
methods improve little compared with the method that only

TABLE V

ABLATION STUDY FOR METHODS OF MERGING ATTENDED IMAGE

FEATURE XG AND ATTENDED FACT FEATURE FG . MCAN IS THE
BASELINE MODEL WITHOUT ANY KNOWLEDGE FEATURE.

ATTENDED VISUAL FEATURE XG INDICATES BASELINE ONLY

WITH VISUAL FEATURES. CONCATENATION, SUMMATION,
AND WISE-PRODUCT REPRESENT THREE FREQUENTLY

USED METHODS. ADAPTIVE SCORE ATTENTION IS

THE EFFECTIVE METHOD THAT WE PROPOSED

FOR BOTH ATTENDED IMAGE FEATURE AND
ATTENDED KNOWLEDGE FEATURE

uses attended visual feature XG and provides the accuracy
of 67.77% shown in the second row. The third row in Table V
shows that the attended knowledge feature FG and the attended
visual feature XG combine in a concatenation way. The exper-
iment accuracy is 67.67% on average after three experiments,
which is much lower than the baseline. The experiment result
of the summation of two kinds of attended feature is 67.77%,
as shown in the fourth row. At the same time, the experiment
result of wise-product between two kinds of attended feature
gets 67.76% in the fifth row, near the summation result. All
three simply combined methods fail to get better performance
than the method only with attended visual feature XG .

After attended knowledge feature FG and attended visual
feature XG are combined through the newly designed adaptive
score attention module, the accuracy improves to 67.87%,
which is a relatively large margin. From the experiments in
the ablation study, the adaptive score attention module can
combine image feature and knowledge feature effectively, keep
a balance between these two kinds of features, and, thus, fully
enhance the performance of our model in the experiment.
Concretely, the adaptive score attention module can intelli-
gently learn the importance between image and knowledge
on certain questions. When the focus point of the question is
related to the image instead of the knowledge, the importance
of image is much larger than the knowledge. Therefore, after
processed by the adaptive score attention module, the attended
visual feature XG gets the score close to 1, and the attended
knowledge feature gets the score near to 0. In this manner, our
model can get expected performance in utilizing the adaptive
score attention module to automatically select the most related
source feature about the question.

F. Qualitative Analysis

As aforementioned, when answering questions, only relying
on the visual information is not adequate. If we require the
model to be as intelligent as a human being, we should
leverage the external knowledge base (e.g., ConceptNet) to
let our model receive common sense or knowledge that the
model lacks to compensate for the inadequacy of visual cues.
For example, for the image in the top left row of Fig. 5,
a model should answer the question “Why are some people
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Fig. 5. Qualitative analysis of different kinds of questions. Image–question pairs of the top row in the figure highlight the impact of knowledge as images do
not have enough visual information to answer the question. For instance, in the top left row of the figure, the question (Q) focuses on the reason why some
people hold the umbrellas; thus, simple image content cannot provide enough information to give the correct answer (A). However, under the guidance of
external knowledge (K), our model can seek the answer successfully. Our answers in green are correct but the MCAN model’s answers in red are incorrect.
On the other hand, image–question pairs of the bottom row in the figure explicate the importance of visual features. When the external knowledge does not
help to answer the questions, our model and MCAN model can both provide correct answers.

holding umbrellas?” and the true answer is “rain.” Only object
“umbrella” shows in the image without further information
about “rain” so previous methods that rely on knowledge only
from the image face difficulty to provide an accurate solution.

However, introducing external knowledge facilitates our
model to provide an accurate answer. Concretely, we query
all relevant knowledge about the “umbrella” from ConceptNet
and order them by the degree of their corresponding credibility.
The first knowledge of “umbrella” is “An umbrella is for
protection from the rain,” which is beneficial for our model
to provide the correct answer. Now, we have both images that

cannot directly provide the right solution and knowledge that
teaches the model what a fitting answer can be, and if we
utilize these two source information without distinguishing,
our model instead decreases the performance. The freshly
proposed adaptive score attention module can adaptively deter-
mine more relevant information to support our model locate
true solution “rain” from external knowledge and image.

On the other hand, when a question focuses on visual
objects, rich and detailed visual information lets our model
clearly “see” the whole image, thus answers the question
accurately. For example, the question, “How many beds?”
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TABLE VI

ACCURACY RESULT ON THE TEST-DEV SET AND TEST-STD SET WITH THE
STATE-OF-THE-ART METHODS ON THE VQA V2 DATA SET. OUR BEST

SINGLE MODEL IS TRAINED ON THE TRAIN+VAL SPLITS PLUS

THE AUGMENTED DATA SET VG, WHICH IS THE

SUBSET OF VISUAL GENOME

TABLE VII

RESULTS ON THE VQA-CP V2 [39] DATA SET. OUR MODEL OUTPER-
FORMS OTHER MODELS ON NUMBER, OTHER, AND OVERALL TASKS

concentrates at as many beds as possible within an image.
By extracting more valuable visual details through Faster
R-CNN, our model is more capable of fulfilling the ques-
tion, which focuses on counting on visual objects. However,
the object label “beds” from the question does not help to the
model. The object label “beds” knowledge with most weight
scores provided from the external knowledge base ConceptNet,
such as “Bed is related to sleeping,” promotes little function
for elucidating the question. Therefore, our adaptive score
attention module automatically filters the external knowledge
and selects the detailed information from the input image to
present a fitting answer.

G. Comparison With Other Methods

1) VQA v2: Through a series of ablation studies, we select
the model with the adaptive score attention module that
provides the best result to compare with other existing meth-
ods. We score 71.51% of overall accuracy on the Test-dev
data set and perform 0.88% better than the baseline model,
as shown in Table VI. Also, our model obtains 71.84% of
the overall accuracy on the Test-std data set. At the same
time, compared with the previous models, our model also
provides the best results on the Yes/No, Number, and Other
tasks, which indicates that our model is designed in a more
advanced way. Although BAN+Counter model [44] used an
additional module “Counter” [45] for number task, our model
still achieves a better score on the number task, which indicates
that our model has comprehensive inference capability.

2) VQA-CP v2: VQA-CP v2 is a new data set to overcome
the bias of training data of the original VQA v2 data set.
To indicate the generalization ability of our model, we take
extra experiments on the data set VQA-CP v2. Our model
obtains the best result of 42.60% on the overall task. Moreover,
our model outperforms other models on two subtasks of
Number and Other. The GVQA model is designed for Yes/No

TABLE VIII

TOP-ONE OVERALL ACCURACY RESULT WITH OTHER METHODS ON
THE FVQA DATA SET. OUR BEST SINGLE MODEL OUTPERFORMS

THE BEST RESULT REPORTED IN FVQA IN TOP-ONE ACCURACY

subtask and has the best performance on it. In general, our
model has outstanding performance on the overall task and
balanced scores on three subtasks.

3) FVQA: FVQA is collected as a knowledge-based
VQA data set. To indicate the capacity in answering
knowledge-based visual questions, we employ our model to
conduct an additional experiment on the data set FVQA. Our
model obtains 66.39 ± 0.50% top-one overall accuracy in five
random splits of the data set, as shown in Table VIII. Our
experiment’s overall accuracy outperforms the best top-one
overall accuracy reported in FVQA, which is 63.63 ± 0.73%.

V. CONCLUSION

In this work, we have proposed a novel KAN for VQA,
which introduced richer visual information and compensated
common sense from an external knowledge base. Furthermore,
for different types of questions, we have made our model
adaptively balance the importance between visual information
and external knowledge. Thus, we have introduced a new
adaptive score attention module that automatically chooses a
suitable information source depending on the type of question.
Experimental results have shown that our model possessed
the state-of-the-art outcomes on the VQA v2, VQA-CP v2,
and FVQA.
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