
6434 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

SlimConv: Reducing Channel Redundancy in
Convolutional Neural Networks

by Features Recombining
Jiaxiong Qiu , Student Member, IEEE, Cai Chen , Student Member, IEEE, Shuaicheng Liu , Member, IEEE,

Heng-Yu Zhang , and Bing Zeng , Fellow, IEEE

Abstract— The channel redundancy of convolutional neural
networks (CNNs) results in the large consumption of mem-
ories and computational resources. In this work, we design
a novel Slim Convolution (SlimConv) module to boost the
performance of CNNs by reducing channel redundancies. Our
SlimConv consists of three main steps: Reconstruct, Transform,
and Fuse. It aims to reorganize and fuse the learned features
more efficiently, such that the method can compress the model
effectively. Our SlimConv is a plug-and-play architectural unit
that can be used to replace convolutional layers in CNNs directly.
We validate the effectiveness of SlimConv by conducting com-
prehensive experiments on various leading benchmarks, such as
ImageNet, MS COCO2014, Pascal VOC2012 segmentation, and
Pascal VOC2007 detection datasets. The experiments show that
SlimConv-equipped models can achieve better performances con-
sistently, less consumption of memory and computation resources
than non-equipped counterparts. For example, the ResNet-101 fit-
ted with SlimConv achieves 77.84% top-1 classification accuracy
with 4.87 GFLOPs and 27.96M parameters on ImageNet, which
shows almost 0.5% better performance with about 3 GFLOPs
and 38% parameters reduced.

Index Terms— Slim convolution, channel redundancy, image
classification, model compression.

I. INTRODUCTION

IN MOST studies of deep learning, convolutional neural
networks (CNNs) have been emphasized with attention

given to their impactful modeling for various vision tasks,
such as image classification [12], object detection [19] and
semantic segmentation [15]. Vanilla convolutional layers are
increasingly deeper and more complicated for better accuracy,
but these models bring massive parameters and floating-point

Manuscript received August 7, 2020; revised March 11, 2021 and
May 17, 2021; accepted June 24, 2021. Date of publication July 7, 2021;
date of current version July 15, 2021. This work was supported in part by the
National Natural Science Foundation of China (NSFC) under Grant 61872067,
Grant 62031009, and Grant 61720106004; in part by the 111 Projects
under Grant B17008; and in part by the Sichuan Science and Technology
Program under Grant 2019YFH0016. The associate editor coordinating the
review of this manuscript and approving it for publication was Prof. Zhu Li.
(Corresponding authors: Shuaicheng Liu; Heng-Yu Zhang.)

Jiaxiong Qiu, Cai Chen, Shuaicheng Liu, and Bing Zeng are with the
School of Information and Communication Engineering, Institute of Image
Processing, University of Electronic Science and Technology of China,
Chengdu, Sichuan 611731, China (e-mail: liushuaicheng@uestc.edu.cn).

Heng-Yu Zhang is with the Department of Cardiology, West China
Hospital, Sichuan University, Chengdu, Sichuan 610041, China (e-mail:
zhanghe8635_cn@sina.com).

Digital Object Identifier 10.1109/TIP.2021.3093795

operations (FLOPs). Hence, the accuracy and cost tradeoffs
are ubiquitous in efficient CNN design, especially for mobile
and edge devices (e.g., smartphones, drones, and self-driving
cars). Over the past several decades, the field has spawned a
giddy mix of methods to compress models while preserving
accuracies, such as quantizing [48] and pruning [28], [30].
Besides, hand-craft or automatic designs have also made
appreciable success.

MobileNet [7] exerts depth-wise and point-wise convolu-
tions to build a small network with low latency, which achieves
over 71% top1-accuracy with merely 3.5M parameters and
0.3 GFLOPs on ImageNet [12]. On the other hand, Shuf-
flenet [8] resorts to the channel shuffle operation to improve
the performance of tiny networks owing to the sufficient
process to the inter-channel information. In addition, Neural
architecture search (NAS) methods [33], [34] learn to tune
network architectures and gain efficient models with high
potentials.

These methods are primarily dedicated to explicitly dimin-
ishing the redundant parameters and decreasing the computa-
tional cost. However, the lightweight models have fewer layers
or channels than large models, causing losses of high-layer or
channel-wise information. According to [1], this information is
significant for representing stronger non-linear expression abil-
ity and learning more complex transformations, which helps to
fit more general and difficult inputs. Thus, this information loss
brought by many of the lightweight models hampers the effort
to the performance. Researchers have investigated plenty of
redundant features in the network channels, which determine
the model size and influence the implicit representation of
models. OctConv [23] discussed the effectiveness of dropping
the low-frequency part of features by interleaving connec-
tions in the convolutional layers, thus reducing the spatial
redundancy. Besides, the series of Network Slimming [22],
[38], [39] conducted nice explorations to directly prune the
redundant channels despite the difficulty in dealing with the
batch normalization. In particular, Autoslim [22] achieved
state-of-the-art performance with the help of NAS [33].

Redundant features often waste storage and computational
resources. We notice that simple linear operations can reduce
redundant features. Here, we visualize all features in Fig. 1
from the first layer second stage of ResNet50 trained on the
ImageNet. Some of the cells contain almost empty contents,

1941-0042 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0345-0819
https://orcid.org/0000-0002-6065-7296
https://orcid.org/0000-0002-7912-4537
https://orcid.org/0000-0002-8815-5335
https://orcid.org/0000-0002-4491-7967

QIU et al.: SlimConv: REDUCING CHANNEL REDUNDANCY IN CNNs BY FEATURES RECOMBINING 6435

Fig. 1. Deep features are not compact in CNN Networks. We visualize
all feature maps at the first layer second stage in ResNet-50 trained on the
ImageNet for a classification task. Some redundant feature maps marked with
red boxes are shown nearly empty contents, and other feature maps marked
with blue boxes have little information.

and some of them have little information. One way to reduce
such redundancies is splitting and summation. Inspired by
group convolutions, we propose first to split features into
several groups. Then, different groups are merged into one
group, such that redundant feature groups are reduced. For
example, in Fig 1 we show 8 × 8 feature cells, which can
be split into two 4 × 8 groups. Each cell in one group can
sum up with the cell at the same location in the other group,
merging to one cell to save space. In this way, features with
rich information can sum with less informative ones (marked
with red and blue boxes in Fig 1). As a result, only informative
cells are retained.

On the one hand, the split and sum operation can reduce
the feature redundancy if adding proper cells, e.g., adding one
informative with one less informative. On the other hand, when
we weight two different informative features and then sum
them to one feature, each pixel of this image has coded more
information from this pixel of the original feature with the
larger weight, and the other is damaged. So the representation
of features could be damaged if adding two informative cells
or become less effective when adding two empty cells. This
could happen because cells are paired up for summation based
on their locations instead of their contents. If we look at
their contents, then the implementation is non-trivial. To solve
this problem, we propose a novel operation weights flipping,
which can essentially reduce the probability of improper
summations.

To this end, we propose a novel convolutional operation,
which we term as Slim Convolution (SlimConv), to obtain
good performances while saving the computational resources
simultaneously. The SilmConv can reduce and reform feature
channels to improve the quality of feature representations.
In addition, SlimConv is designed as a plug-and-play module
that can be embedded into various popular CNN models. The
SlimConv reduces calculations and maintains the capability
of feature representations, within which the weights flipping

operation plays an important role. It is a light-cost operation
but can maintain representations significantly during the chan-
nel reduction.

The configuration of SlimConv is depicted in Fig. 2, which
mainly consists of three operations: reconstruct, transform,
and fuse. For reconstructing, we introduce SE-module [2]
to obtain channel-wise weights of full channels (Fig. 2 (a))
initially. Second, we input feed-forward feature maps into two
pathways. For the top pathway, we multiply the input features
by the weights and halve the weighted features, followed by
the element-wise summation of the pieces (Fig. 2 (c)). For the
lower pathway (Fig. 2 (d)), we first flip the weights (Fig. 2 (b))
and then conduct the same process as the top pathway. As a
result, the feature channels are 2-fold after being reduced
in each pathway. The “transform” stage means transforming
the reconstructed features through convolutional layers. For
transforming, we follow the strategy of SKNet [10] which also
uses the bottleneck structure for two pathways. Specifically,
a convolution layer with 3×3 kernel serves as the transformer
for the top pathway (Fig. 2 (e)). Meanwhile, a 1×1 convolution
layer and a following layer with 3 × 3 kernel are adopted for
the bottom (Fig. 2 (f)). Here, the transformer with a small
kernel size also reduces channels by half. Finally, the features
from two pathways are concatenated for the feature fusion
(Fig. 2 (g)). In this way, as demonstrated by our experiments,
our SlimConv can reduce the number of channels substantially
while retaining the representation capability in theory. More
importantly, SlimConv is a plug-and-play module that can
be applied to enhance the efficiency of various backbone
architectures by simply replacing their original convolutions.

To evaluate the performance of the SlimConv mod-
ule, we conduct various experiments for common visual
tasks on leading benchmarks, including ImageNet [12],
MS COCO2014 [17], Pascal VOC2012 segmentation [16], and
Pascal VOC2007 detection [18]. Experimental results show
that the performance of our model is competitive compared
with most available state-of-the-art networks concerning accu-
racy and efficiency. We also re-implement all lightweight
models by the same training strategy for fair comparisons.
Remarkably, we re-implement the MobileNet(v2) [7] equipped
with SlimConv achieves 71.7% top-1 accuracy with only
0.239 GFLOPs and 3.38M parameters, which shows 0.3%
higher performance with over 20% lower computational cost
and 4% less parameters. Likewise, when equipping Shuf-
fleNet(v2) [8], the accuracy improves nearly 1% while still
reducing 40 MFLOPs and 30K parameters.

In summary, our main contributions are:
• We design a plug-and-play module named SlimConv that

can compress models and enhance the representation
ability of CNNs.

• We propose to reconstruct features to reduce the channel
redundancy, within which a weights flipping operation
can largely strengthen the diversity of features.

• We integrate various CNN backbones with the pro-
posed SlimConv. Meaningful improvements have been
achieved through experiments on challenging tasks, such
as image classification, semantic segmentation, and object
detection.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

6436 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 2. Pipeline of Slim Convolution. For the reconstruct phase, (a) the input features X with size w × h × c is fed into the SE-module [2] to obtain
channel-wise weights w. (b) The X is then fed into two pathways. (c) For the top pathway, the weights w multiplied with the feature X . (d) For the lower
pathway, we flip the weights w to obtain ŵ and then multiplied with X . The features in each pathway are split into two groups. Then, we apply element-wise
summation on two groups, yielding features with size w × h × c/2 in each pathway. For the transform phase, (e) a convolution layer F3×3 with kernel
size 3 × 3 is applied for the top pathway and (f) two convolution layers F1×1 and F3×3 are adopted for the lower pathway, producing features with sizes
h × w × c/2 and h × w × c/4 accordingly. For the fuse phase, (g) features from two pathways are concatenated as the output with size h × w × 3/4c.

The rest of the paper is organized as follows: Sec. II intro-
duces the related work in the area. Then Sec. III explains the
proposed SlimConv and its example bottleneck architecture.
Experiments and analysis are presented in Sec. IV, and finally
in Sec. V, concluding remarks are discussed.

II. RELATED WORK

A. Efficient Network Architecture Design

Pioneering works on computer vision tasks achieved higher
accuracy every year by prompting the network architecture
to be deeper and more complex, such as AlexNet [25] and
VGG [26] on ImageNet competition. From hand-craft designs,
the increase in the number of parameters and computational
complexity made the improvement of accuracy less beneficial.
InceptionNet [13] proposed an Inception module to deepen
the network with few added parameters. ResNet [1] and
DenseNet [21] utilized the efficient residual block by adopting
shortcut connections. ResNeXt [5] replaced traditional con-
volutions with group convolutions and introduced cardinality
to increase model capacity. Res2Net [41] combined ResNet
and ResNeXt and proposed an unusual multi-scale method.
As the deployment for neural networks on terminal devices
requires more lightweight models, the networks are encour-
aged to mobile-size such as SqueezeNet [24], ShuffleNet [8],
Xception [27], and MobileNet [7]. Except for modifying
backbones, some methods attempted to prune the trained
models, such as [28]–[32], [56], [58], [60], which pruned the
inconsequential connections and weight to decrease the model
size at a moderate accuracy loss. Binary neural networks,
such as PCNN [59] push network quantization to the extreme,

which dramatically accelerating both forward and backward
computation. ACNet [57] trained accessorial asymmetric ker-
nels to re-parameterize the regular kernels and improved
the performance without adding inference-time computations.
Recently, neural architecture search (NAS) has became a
trend for the efficient CNN field. These methods, such as
NAS [33], PNAS [34], and MNASNet [35], obtained the
best network architecture by learning to explore the network
structures, including width, depth, convolution kernels, and
connections. EfficientNet [36] and EffiecientDet [37] produced
experimental evidence for scaling normal models to larger
ones as the backbone with the method of NAS [33], aiming
to maximize accuracy with limited resources. However, they
need to mobilize a large number of computing resources to
fulfill the task automatically. Besides, the series of Slimmable
Network [22], [38], [39] was another kind of approach that
proposed to learn a scale factor for each layer to reduce the
network width while preserving the performance. It is restric-
tive for the network architecture to search for ideal models for
many tasks, and it needs iterative training procedures.

B. Computational Cost Reduction

For designing an effective lightweight CNN, the evolution of
the core convolution operation is the most direct way. It can
significantly reduce the channel redundancy in the network
so that it does not need to prune or compress the model
with extra computations after training. Furthermore, it can
reorganize the features for performance improvements. Based
on the group convolutions [5], [25], ShuffleNet [8] proposed
channel shuffle operation to build a desirable lightweight

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: SlimConv: REDUCING CHANNEL REDUNDANCY IN CNNs BY FEATURES RECOMBINING 6437

model due to its improvement of the information flow across
feature channels. MobileNet [7] introduced depth-wise sep-
arable convolutions, which demonstrated good representative
ability than regular convolutions, thus reducing the number
of parameters and accelerating the training. OctConv [23] and
Multi-grid CNN [40] respectively proposed octave convolution
and multi-grid convolution to exploit multi-scale representa-
tions. Especially, octave convolution took more consideration
regarding the efficient design to reduce the feature redundancy
and strengthen the information exchange between channels
between high or low frequencies. GhostNet [50] discussed
that some redundant features are useful, which can help
networks understand the input data. As such, it proposed to
use cheap operations to embrace redundant features. It uses
1 × 1 convolutional layer to generate a part of output feature
maps and then uses the next convolutional layer to generate
the other part of output feature maps like DenseNet. This
is similar to the transform step in the bottom pathway of
our module. However, we do not make features from the
1 × 1 convolutional layer as the part of output features
in the bottom pathway of our module. Moreover, the main
contribution of our method is on the reconstruction step, which
uses the Split and Sum operation to compress the original
input feature information. And then, we integrate branches of
different arranged weights to improve the feature diversity and
supplement the information loss.

However, these methods still suffer from the problem of
feature redundancies. In contrast, our SlimConv can decrease
the computational cost and storage at the same time by pruning
a part of the channels of a convolution layer.

C. Attention Mechanisms

Attention has been widely used in many research fields
such as salient object detection [42], depth completion [43],
image super-resolution, [44] and facial expression recogni-
tion [45]. Wang et al. [46] proposed an attention mod-
ule with Encoder-Decoder style for the image classification
task. SENet [2] introduced a lightweight attention module
to re-calibrate the feature map by channel-wise weights.
Besides channel-wise importance, CBAM [47] considered spa-
tial attention and designed two sequential sub-modules, includ-
ing channel-wise and spatial attention. SKNet [10], following
InceptionNet and SENet, adopted a soft-attention mechanism
to make networks select the features with different receptive
fields automatically. In contrast, we just use the attention
mechanism (i.e., a general SE-module) to generate weights
for our proposed features reconstructing. The motivation is
that we want to add attentive weights to the channel features
to avoid the potential excessive values in feature groups after
the Split and Sum operation. Also, it benefits our architecture
as performing the feature recalibration to learn to use global
information to emphasize information features and suppress
useless features selectively.

III. METHOD

A. Slim Convolution

Figure 2 shows our pipeline of SlimConv, which includes
two pathways and consists of three steps: Reconstruct,

Transform, and Fuse. Note that Fig. 2 only shows our default
setting, and it is flexible to expand to fit different bottlenecks.

1) Reconstruct: Given an input feature map: X ∈ R
C×H×W ,

we use SE-module [2] to obtain channel-wise weights w.
We replace the fully connected (fc) layer with the convolu-
tional layer whose kernel size is 1×1, and use larger reduction
ratio 32 as the default setting. The whole process of acquiring
w can be expressed as:

⎧⎪⎪⎨
⎪⎪⎩

z = Fgp(X) = 1

H × W

H∑
i=1

W∑
j=1

X (i, j),

w = σ(F f c2(δ(F f c1(z)))).

(1)

where z ∈ R
C contains channel-wise statistics, σ refers to

the sigmoid function and δ is the ReLU [3] activation. F f c1
and F f c2 are convolution operations, F f c1 includes the Batch
Normalization [4].

In the top pathway, we multiply features by w, yielding
weighted features Xw. Then, we split Xw into two parts
(X1

w, X2
w), and sum them to compress the number of features

to half:
⎧⎪⎨
⎪⎩

X ′
w = X1

w + X2
w,

Xw = w ∗ X,

X1
w ∪ X2

w = Xw.

(2)

The compression can reduce redundant features but results
in the loss of valuable information. To deal with it, we propose
the bottom pathway.

In the bottom pathway, we disrupt the order of feature
weights through weights flipping. Further, we use flipped
channel-wise weights w̌ to go through the same operations
as the top pathway to obtain the half-channel features X ′

w̌
.

2) Transform: We follow the bottleneck design rules of
ResNet [1] and conduct two transformers. The top transformer
F3×3 is a convolution layer with kernel size 3. The bottom
transformer contains two convolution layers F1×1, F3×3 with
kernel sizes 1 and 3 respectively. The convolution layer with
kernel size 1 reduces the number of channels by half, followed
by the convolution layer with kernel size 3.

3) Fuse: We concatenate different features from two path-
ways to integrate information. Our SlimConv outputs feature
Y with channel number 3c

4 (c is the original channel number).
Notably, the classic group convolution [25] does not reduce

the channel. Unlike that, our method intends to merge features
to reduce the channel of features after grouping. Secondly,
the group convolution convolutes each feature group sepa-
rately and then concatenates the shared parameters. While our
method does a simple convolution after merging the feature
groups, resulting in a better generalization ability than that of
group convolution.

B. Network Architecture

Since our proposed SlimConv takes N-channel features as
input and output N

k -channel (k > 1, default is 4
3) features,

it has only one extra hyperparameter k. It can be easily
integrated into many state-of-the-art CNN models, such as

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

6438 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 3. Visualization of feature maps at the first layer second stage of SlimConv-equipped ResNet-50 during Reconstruct phase. The input feature maps
contain 8 × 8 feature cells, many of which are less informative. Then, the features are feed into the SE-Module to produce weights. Next, the features are
feed into two pathways. For the top pathway, the weights are directly multiplied with the features. For the lower pathway, the weights are flipped before
multiplying with the features to introduce diversities. For each pathway, the feature cells are split into two 4 × 8 cells. Each cell in a group sums with the
cell at the same location in the other group, yielding 4 × 8 cells for each pathway. The final output of reconstructing phase is still 8 × 8 cells from two
pathways. However, the output cells become more informative, and the features of the two pathways are also different due to weights flipping. We highlight
some obvious differences with boxes.

Fig. 4. Modified Res-Bottleneck.

ResNet [1], ResNeXt [5], DLA [6], MobileNet [7], Shuf-
fleNet [8], Big-Little Net [9]. We take ResNet [1] as an
example.

As illustrated in Fig. 4, the proposed SlimConv displaces the
previous ordinary convolution layer, which with kernel size 3
and decreases the number of output channels. So the input
of the last convolution layer with kernel size 1 needs to be
changed accordingly.

Particularly, when embedding SlimConv in DLA46-C [6]
and MobileNet V2 [7] which only have few channels in a
convolution layer, we replace C

32 with max(C/r, L) (r and L
are fixed values) in the SE-Module.

C. Analysis on Complexities

We can easily integrate SlimConv into existing
well-designed neural networks to decrease the computation
and storage costs. Most of the parameters in SlimConv
are from transform. Here, we analyze the reduction of
theoretical memory usage by using the SlimConv module.
The 1 × 1 conv layer in the lower pathway is fixed, and the
other n × n conv layers can be modified according to the
basic model. The parameters of the basic convolution layer
can be calculated as:

Pb = C1 × n × n × C2 = n2C1C2 (3)

where n is kernel size of the convolution layer, C1 and C2
are the number of input and output feature channels. From
Fig. 2, we set k = 4

3 as example, parameters of our proposed
SlimConv module consists of:

Ps = 1

2
C1 × 1 × 1 × 1

4
C1 + 1

4
C1 × n × n × 1

4
C2

+1

2
C1 × n × n × 1

2
C2

= (
5

16
n2 + 1

8

C1

C2
)C1C2 (4)

We can adjust k to change input and output feature channels
for flexible SlimConv modules. Because we reduce the number
of channels, the computation for convolution is also reduced.

D. Effects of Flipping Weights

Our method of reducing channel dimension is a lossy
compression method, which could cause some loss of feature
information. We adopt a weights flipping operation to obtain
rearranged weights. These weights introduce more possible
situations for feature summation in the same channel and then
help to generate more diverse features after feature summation.
More diverse features can enhance the representation ability
of neural networks in the reduced channel. Therefore, the core
of our model is a weights flipping operation that can vastly
improve the feature diversities, contributing to the performance
crucially.

To better understand what happens inside weights flip-
ping operation, we visualize the neural cells of our
SlimConv-equipped ResNet-50 at the second layer trained on
the task of ImageNet in Fig. 3. We choose a frog image and
show its 8 × 8 feature cells. As seen, most of the cells are

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: SlimConv: REDUCING CHANNEL REDUNDANCY IN CNNs BY FEATURES RECOMBINING 6439

less informative. Then, we feed the feature cells into two
pathways. Therefore, each pathway still contains 8 × 8 cells.
For the top pathway, the weights produced by SE-Module are
directly multiplied with the features. For the lower pathway,
flipped weights are multiplied with the features to introduce
diversities. A detailed example is depicted in Fig. 3. For
each pathway, the cells are split into two groups. Each group
contains 4 × 8 cells, according to their physical locations.
Each cell sums with the cell of the same coordinate in the
other group to complete the reconstruction phase. As a result,
the output features are more informative for each pathway
as no empty cells can be observed. Moreover, due to the
weights flipping operation, the two output features are different
and both informative, which means the feature diversity is
expanded. In Fig 3, we highlight some cell differences with
blue boxes in the top pathway and red boxes in the lower
pathway. After reconstruction, the outputs are still 8 × 8 cells,
with each pathway contains 4×8 cells. However, they become
more informative compared with the inputs.

IV. EXPERIMENTS

To verify the effectiveness of our method, we conduct com-
prehensive experiments regarding various vision tasks on sev-
eral benchmark datasets. Firstly, we introduce the environment
of implementation and all the datasets used for experiments in
the subsection IV-A. Then, as image classification is the typical
task of CNN, we compare the state-of-the-art methods on
ImageNet and CIFAR datasets in subsection IV-B and IV-C
respectively. Also, we analyze the compressibility of our
module in the subsection IV-D. Afterwards, we demonstrate
our method on semantic segmentation and object detection in
subsection IV-E and IV-F respectively. It follows by exten-
sive ablation studies on ImageNet dataset in subsectionIV-G.
Finally, in the subsection IV-H, we discuss how redundant
features are compressed.

A. Implementation Details

Our proposed model and other state-of-the-art CNN-based
models we used are all implemented by PyTorch [11]. Similar
to [5], these models are trained on less than 8 GeForce RTX
2080 Ti GPUs. We mainly validate the effectiveness of our
proposed model on 5 challenging datasets:

1) ImageNet: We use the most popular dataset Ima-
geNet [12] for all the experiments on image classification.
ImageNet is also a common benchmark, containing 1.28 mil-
lion images for training and 50k images for validation. All
these images have labels from 1000 categories. We train the
SlimConv-equipped models on training images and pick the
model with the best top-1 error performance on validation
images. We conduct the random-size cropping to 224 ×
224 and random horizontal flipping [13]. For fair comparisons
on middle-sized models, we use the same data augmentation
and training strategy as [1], [7], and [9] respectively. Specifi-
cally, we train middle-sized and multi-scale models using SGD
with weight decay 0.0001, momentum 0.9, and a mini-batch
of 256 on 8 GeForce RTX 2080Ti GPUs. The learning rate
is initially set to 0.1 and divided by 10 every 30 epochs.

TABLE I

PERFORMANCE COMPARISON FOR RESNET [1], RESNEXT [5], DENSENET
[21], SENET [2], GHOST-RESNET-50 [50], SPCONV-RESNET-50 [51]

AND OUR INTEGRATED MODELS ON IMAGENET

For lightweight models, we use SGD with weight decay 4e-5.
The learning rate is set to 0.05 initially with the cosine strategy.

2) CIFAR: To validate the performance of our SlimConv
on a small-sized dataset, we conduct experiments on the
CIFAR-100 dataset [49], which contains 50k images for the
training and 10k images for the testing with 100 classes.
The size of testing images is 32 × 32. We replace the corre-
sponding layer of the basic block with our proposed SlimConv
module. For fair comparisons, we keep the same training and
testing strategy unchanged.

3) Pascal VOC2012 Aug: We evaluate the performance
of our proposed model on semantic segmentation by
using PASCAL VOC12 dataset [14]. Following previous
works, we use the augmented version of the PASCAL
VOC12 dataset [16] which contains 10, 582 training images
and 1, 449 validating images from 21 classes. We use the
state-of-the-art method Deeplab v3+ [15] as the segmentation
framework and the exact implementation details for all models.

4) MS COCO2014 & PASCAL VOC2007: For object detec-
tion, we evaluate our SlimConv on MS COCO dataset [17]
and PASCAL VOC2007 dataset [18]. We take the widely used
method Faster RCNN [19] as the detection framework and use
the same strategy to train and test models.

B. ImageNet

1) Comparing With Middle-Sized Models: Table I reports
4 group of results according to the complexity. Models
equipped with our SlimConv contain the prefix ‘Sc’ in all
the tables. In the first group, our integrated Sc-ResNet-50
achieves almost 0.6% better accuracy, 35% fewer FLOPs
and parameters than non-equipped original ResNet-50 [1].
When we adjust k to 8

3 , Sc-ResNet-50 reduces 54% FLOPs
and 53% parameters from ResNet-50. With the modi-
fied SE-Mouble, our Sc-ResNet-50 shows the same accu-
racy performance as SE-ResNet-50 [2], but cost over 40%
fewer parameters. When compared with other manual effi-
cient modules, our Sc-ResNet-50s have better accuracy,
fewer FLOPs, and parameters than SPConv-ResNet-50s [51]
and Ghost-ResNet-50 [50]. These modules both use group

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

6440 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE II

PERFORMANCE COMPARISON FOR MULTI-SCALE MODELS:
BL-RESNET-50 [9], OCT-RESNET-50 [23] AND OUR

SC-BL-RESNET-50 ON IMAGENET

TABLE III

PERFORMANCE COMPARISON FOR LIGHTWEIGHT MODELS(SQUEEZENET

[24], DLA [6], MOBILENET V2 [7] AND SHUFFLENET V2 [8]) AND
OUR INTEGRATED MODELS ON IMAGENET

convolution operations for better performance, and SPConv-
ResNet-50s also utilize channel attention like SKNet [10].

In the second group, we consider deeper models and
take ResNet-101 [1] as the basic model. Our integrated
Sc-ResNet-101 also achieves nearly 0.5% less top-1 error
than the basic model while reducing FLOPs and parameters
simultaneously by over 38%. Our Sc-ResNet-101 is also more
efficient than DenseNet-161 [21] and SE-ResNet-101 [2].

In the third group, we add our module to ResNeXt-50 [5].
We do the same group convolution operation in the last two
convolution layers with kernel size 3×3. Due to our SlimConv
can reduce channels, the width of each group is decreased.
Our integrated Sc-ResNeXt-50 achieves almost 0.4% better
accuracy while also reduces the computational cost and storage
by 10%. In the last group, we change our hyperparameter
k to 2, reducing the width from 128 to 96 during the inte-
gration to ResNeXt-101 [5]. Even though having a thinner
architecture, our Sc-ResNeXt-101 achieves a slightly improved
accuracy, with over 42% fewer FLOPs and 46.4% fewer
parameters than the wider basic model. Our Sc-ResNeXts has
less accuracy gain than SE-ResNeXt because of the significant
reduction in parameters and FLOPs for ResNeXts.

2) Comparing With Multi-Scale Models: Multi-scale strat-
egy [9], [23] is effective for image classification, Table II
reports the results. Here, we chose a model from Big-Little
Net [9], named bL-ResNet-50, to be our basic model,
where ‘bL’ stands for Big-little. As seen, SlimConv equipped
model, Sc-bL-ResNet-50, achieves nearly 0.4% better accu-
racy, 24.2% fewer FLOPs, and over one-third fewer parame-
ters than the basic model. Compared with the SOTA model
Oct-ResNet-50, our model also achieves almost 0.3% less
top-1 error, fewer FLOPs, and over 30% fewer parameters.

3) Comparing With Lightweight Models: We conduct three
groups of experiments to test our performances on lightweight
models. Table III reports the results. In the first group,
we choose DLA-46-C [6] as the baseline and implement an
efficient model with parameters less than 1 M. Our integrated

TABLE IV

INFERENCE LATENCY TIME (MS/BATCH), GPU MEMORY (GB) AND
COMPRESSED RATIO (%) OF RESNET-50 AND SC-RESNET-50S

ON IMAGENET. THE SIZE OF ONE BATCH IS 128

Sc-DLA-46-C achieves almost 0.3% better accuracy and
18.1% fewer FLOPs with only 0.97 MB parameters than the
baseline. Compared to Squeezenet [2], the SlimConv embed-
ded model has improvements as nearly 4% better accuracy,
32.9% fewer FLOPs, and 19.2% fewer parameters. We also
choose the most popular lightweight models MobileNet [7]
and ShuffleNet [8] as the baseline models. In the second
group, our integrated Sc-ShuffleNet performs nearly 1% better
accuracy, less computational cost and parameters than Shuf-
fleNet [8]. In the third group, our Sc-MobileNet also achieves
almost 0.3% less top-1 error, 20% fewer FLOPs, and fewer
parameters than the basic MobileNet [7].

4) Comparing With Network Pruning Methods: As
shown in Fig. 6, we compare our Sc-ResNets with
other network pruning methods including AutoSlim [22],
Taylor-FO-BN [54], DMCP [52], SSS [53], MetaPrun-
ing [55] and Slimmable [38]. Without any searching,
SlimConv-equipped ResNets surpass most of these network
pruning methods on both accuracy and FLOPs. Because some
network pruning methods aim to reduce FLOPs, we show the
results of different FLOPs. Note that Sc-ResNets also have
meaningful parameter reduction.

5) Class Activation Mapping: We present some results
of class activation mapping by Grad-CAM [20] to visual-
ize where CNNs pay more attention to image classification.
The visualization examples are shown in Fig. 5. The lighter
the area, the more attention the network has. Compared to
ResNet-50 [1], the results of our integrated Sc-ResNet-50
concentrate on small objects such as ‘Basketball’ and ‘Ice
cream’. Even in complex scenes, the SlimConv equipped
models can still concentrate on the area close to the object
while ResNet-50 has been distracted. For large objects such as
‘Ballpoint’, ‘Airship’, ‘Elephant’ and ‘Mosque’, our activation
maps are more accurate and cover objectives more comprehen-
sively than the basic results.

6) Time: Table IV shows the real inference latency, GPU
memory cost on a GeForce RTX 1080 Ti GPU, and stor-
age consumption for ResNet-50 and our Sc-ResNet-50s.
When increasing the compression ratio of ResNet-50,
the SlimConv-equipped model can achieve faster inference.

C. CIFAR

1) Comparing With Lightweight Models: Table V reports 3
groups of results according to the complexity. When equipped
with our SlimConv, the most widely used lightweight models
ShuffleNet [8] and MobileNet [7]) both achieve over 1%
better accuracy with less computational cost and parameters.
Our integrated Sc-ResNet-56 achieves better accuracy than the

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: SlimConv: REDUCING CHANNEL REDUNDANCY IN CNNs BY FEATURES RECOMBINING 6441

Fig. 5. Grad-CAM [20] visual comparison for ResNet-50 [1] and our Sc-ResNet-50 on ImageNet.

Fig. 6. Top-1 accuracy and FLOPs results comparing with network pruning
methods on ImageNet dataset. Our ResNets including: Sc-ResNet-50(k = 8

3),
Sc-ResNet-50, Sc-ResNet-50(cosine) and Sc-ResNet-101.

TABLE V

PERFORMANCE COMPARISON FOR SHUFFLENET [8], MOBILENET [7],
NASNET [33], RESNET-56 [1] AND OUR INTEGRATED

MODELS ON CIFAR-100

baseline ResNet-56 [1] with nearly half parameters. In partic-
ular, we further integrate the neural-architecture-search model
(NasNet [33]) with our SlimConv module, yielding improved
top-1 error as well as less consumption of resources than the
original non-equipped basic model.

2) Comparing With Middle-Sized Models: We conduct
4 groups of experiments for middle-sized models to test
our performances with different network design mecha-
nisms. Table VI reports the results. In the first group, our

TABLE VI

PERFORMANCE COMPARISON FOR RESNET-50 [1], OCT-RESNET-50 [23],
SKNET-50 [10], SE-RESNET [2], RESNEXT [5] AND

OUR INTEGRATED MODELS ON CIFAR-100

integrated Sc-ResNet-50 achieves almost 2.3% better accu-
racy, almost 36% fewer FLOPs, and 37% fewer parameters
than non-equipped original ResNet-50 [1]. In the second
group, we embed our SlimConv into the last stage of
Oct-ResNet-50 [23], which achieves almost 0.3% better accu-
racy than the baseline while reducing about 60 MFLOPs
and 15.5% parameters. Compared to the SOTA method
SKNet-50 [10] which takes ResNeXt-50 [5] as the basic
model, our integrated Sc-ResNeXt-50 also achieves bet-
ter accuracy, over 22% fewer FLOPs and 26.7% fewer
parameters. Next, we study the impact of feature channel
calibration by using SE-ResNet [2] as the basic model.
The SlimConv-equipped SE-ResNet-50 achieves about 0.6%
less top-1 error, 35.7% fewer FLOPs, and 33.5% fewer
parameters than the original model. As for deeper net-
works, our integrated Sc-SE-ResNet-101 achieves almost
0.8% better accuracy, 38.4% computational cost, and 34.9%
parameters compared with SE-ResNet-101. It is worth men-
tioning that Sc-ResNet-50 already has better performance than
SE-ResNet-101.

D. Compressibility

Our SlimConv is a plug-and-play module, which can be
easily integrated into CNNs to effectively compress models
by only changing one hyperparameter (k). We conduct several
experiments with different values of k. We report the results
in Fig. 8. As k increases, the compression ratio also increases
with slight drops of the performance. It suggests that the k

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

6442 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 7. Visual comparison on semantic segmentation for MobileNet v2 [7], ResNet [1] and our integrated models on Pascal VOC2012.

Fig. 8. Results of Top-1 accuracy and compressed ratio for our Sc-ResNet-50
with different hyperparameters (k) on CIFAR-100.

is a trade-off value tuned for different applications according
to the computational resources. Specifically, our integrated
Sc-ResNet-50 can still achieve nearly 1% better accuracy than

TABLE VII

PERFORMANCE COMPARISON ON SEMANTIC SEGMENTATION FOR

MOBILENET V2 [7], RESNET [1] AND OUR INTEGRATED

MODELS ON PASCAL VOC2012

the basic model with k set to 8
3 while reducing parameters

by 56.77%.

E. Semantic Segmentation

Figure 5 also shows that our module can strengthen net-
works for precisely localizing the region of objects. This char-
acteristic makes our SlimConv has the potential to improve the
performance of models in the semantic segmentation task.

We replace the backbone network of Deeplab v3+ [15]
with MobileNet [7], ResNet [1], and our integrated models
and conduct three groups of comparisons. The results are
shown in Table VII. In group 1, our Sc-MobileNet achieves

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: SlimConv: REDUCING CHANNEL REDUNDANCY IN CNNs BY FEATURES RECOMBINING 6443

TABLE VIII

DETECTION PERFORMANCE ON PASCAL VOC2007 DATASET [18]. NOTE
THAT FLOPS AND PARAMS ARE CALCULATED WHEN THE SIZE

OF THE INPUT IMAGE IS 850 × 600

TABLE IX

DETECTION PERFORMANCE ON COCO2014 MINIVAL DATASET [17].
NOTE THAT FLOPS AND PARAMS ARE CALCULATED WHEN

THE SIZE OF THE INPUT IMAGE IS 600 × 899

slightly worse mean IoU but fewer FLOPs and parameters than
MobileNet [7]. As shown in Fig. 7, the SlimConv equipped
model tends to handle occluded scenes correctly. In group 2,
our Sc-ResNet-50 outperforms its baseline by 0.4% on mean
IoU and also achieves almost 20% fewer FLOPs and over
22% fewer parameters than ResNet-50. In the last group,
our integrated Sc-ResNet-101 achieves 0.7% better mean
IoU, 25.2% less computational cost, and 28.2% less storage
than the reference ResNet-101. As illustrated in Fig. 7, our
Sc-ResNet-101 has the closest results to ground-truth while
the coverage of objects is either more or less for ResNet-101
based results.

F. Object Detection

We evaluate our module on two kinds of the dataset for the
object detection task. The results are shown in Table VIII and
Table IX. We adopt the backbone network of the widely used
ResNet-101 [1] v.s. our Sc-ResNet-101. Our SlimConv based
model achieves 0.2% better average precision than the original
ResNet-101, reducing FLOPs by 34.1% and parameters by
35% on the PASCAL VOC2007 dataset [18]. On the other
popular dataset COCO2014 [17], our Sc-ResNet-101 achieves
1.4% better average precision with over 52G computational
cost decreased and 34.5% fewer parameters than ResNet-101.

G. Ablation Studies

To explore the effectiveness of our different design choice,
we conduct ablation studies on the ImageNet dataset [12] with
ResNet-50 [1] as the baseline. The experimental results are
shown in Table X.

Firstly, we drop the flipping operation and make the bottom
pathway use the same weights as the top pathway. We find
that Sc-ResNet-50 without flipping can still achieve 0.14%
better accuracy than the baseline. It shows that our method
possesses strong robustness. Secondly, we replace the learned
weights w with the flipped weights w̌ so that all weights
used are flipped. In this case, the SlimConv with only flipped
weights makes a little worse accuracy than the baseline.
The first case converges faster but also over-fits earlier than
the second one during training. Hence, our proposed model

TABLE X

PERFORMANCE COMPARISON FOR OUR SC-RESNET-50 WITH
DIFFERENT SETTINGS ON IMAGENET DATASET. FOR @256,

WE DIRECTLY CHANGE THE SIZE OF INPUT IMAGE FROM

224 × 224 TO 256 × 256 ON IMAGENET

TABLE XI

PERFORMANCE COMPARISON FOR OUR SC-RESNET-50 WITH

DIFFERENT SETTINGS ON CIFAR-100

outperforms other settings because of the weights flipping.
Furthermore, we try to use the cosine learning rate. Our
Sc-ResNet-50(cosine) achieves better results than before. Last
but not least, we increase the size of the input image to
256 ×256 and test the performance of the pre-trained models.
Our Sc-ResNet-50@256 achieves 0.76% better accuracy and
almost 35% less computational cost than ResNet-50@256 as
illustrated in Table X.

Finally, we further study the effectiveness of our mod-
ule with other settings. The experimental results are shown
in Table XI. It is demonstrated that the accuracy downgrades
about 0.6% with the replacement to the shuffling weights
(Sc-ResNet-50-sf), while the original flipping weights method
works better. Then we add another branch with shuffling
learned weights to our module (Sc-ResNet-50-3b-sf). The
computational costs apparently increase with adding more
branches while the performance even drops.

H. Discussion

We analyze the learned weights by inputting different
objects to investigate how information of features is com-
pressed. The results are shown in Fig. 9. At the first block
of the stage, the values of output weights are varied from
0.2 to 0.6, and they are almost stable. It is hard to distin-
guish between different classes. Then through flipping these
weights, a small part of weights at the same index changes
large. It suggests that the weighted input features of the two
pathways in our module are similar to each other at the same
index. However, with the layers increase, especially at the
last block named Sc_5_3, the weights of different objects are
more diversified and easier to be distinguished. It indicates
that the two weighted input features start to differ from the
corresponding index and gradually diverse by the splitting and
summation operation.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

6444 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 9. Last activations(w) of the SE-module in our Sc-ResNet-50 on
ImageNet dataset. Two set of activations are named by following the scheme:
Sc_stageID_blockID.

V. CONCLUSION

In this paper, we have designed a novel SlimConv module,
an efficient architectural unit to decrease computational cost
and model storage while improving the performance of deep
CNN models by reducing channel redundancies. The Slim-
Conv consists of three steps, namely Reconstruct, Transform,
and Fuse. A weights flipping operation has been proposed,
which can generate richer features. The extensive experiments
on multiple challenging tasks have shown the effectiveness of
our SlimConv. The existing state-of-the-art methods integrated
with SlimConv possess performance improvements while
reducing the computations and saving the storage. In addi-
tion, the discussion section has indicated that the SlimConv
equipped models have the potentials for further compression.
Finally, we hope our proposed method can inspire the research
for more efficient architectural design.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Jun. 2016, pp. 770–778.

[2] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
CVPR, Jun. 2018, pp. 7132–7141.

[3] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. ICML, 2010, pp. 807–814.

[4] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167

[5] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. CVPR, Jul. 2017,
pp. 1492–1500.

[6] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,”
in Proc. CVPR, Jun. 2018, pp. 2403–2412.

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
CVPR, Jun. 2018, pp. 4510–4520.

[8] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 116–131.

[9] C.-F. Chen, Q. Fan, N. Mallinar, T. Sercu, and R. Feris, “Big-
little net: An efficient multi-scale feature representation for visual
and speech recognition,” 2018, arXiv:1807.03848. [Online]. Available:
http://arxiv.org/abs/1807.03848

[10] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in
Proc. CVPR, Jun. 2019, pp. 510–519.

[11] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. NIPS, 2019, pp. 8024–8035.

[12] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[13] C. Szegedy et al., “Going deeper with convolutions,” in Proc. CVPR,
Jun. 2015, pp. 1–9.

[14] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The Pascal visual object classes challenge:
A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136,
Jan. 2015.

[15] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with Atrous separable convolution for semantic image segmen-
tation,” in Proc. ECCV, 2018, pp. 801–818.

[16] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and A. Malik, “Semantic
contours from inverse detectors,” in Proc. ICCV, 2011, pp. 991–998.

[17] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. ECCV, 2014, pp. 740–755.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS,
2015, pp. 91–99.

[20] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. ICCV, 2017, pp. 618–626.

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. CVPR, Jul. 2017,
pp. 4700–4708.

[22] J. Yu and T. Huang, “AutoSlim: Towards one-shot architecture search
for channel numbers,” 2019, arXiv:1903.11728. [Online]. Available:
http://arxiv.org/abs/1903.11728

[23] Y. Chen et al., “Drop an octave: Reducing spatial redundancy in
convolutional neural networks with octave convolution,” in Proc. ICCV,
Oct. 2019, pp. 3435–3444.

[24] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” 2016, arXiv:1602.07360. [Online].
Available: http://arxiv.org/abs/1602.07360

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[27] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. CVPR, Jul. 2017, pp. 1251–1258.

[28] S. Han et al., “DSD: Dense-sparse-dense training for deep
neural networks,” 2016, arXiv:1607.04381. [Online]. Available:
http://arxiv.org/abs/1607.04381

[29] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin, “ThiNet:
Pruning CNN filters for a thinner net,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 10, pp. 2525–2538, Oct. 2019.

[30] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient ConvNets,” 2016, arXiv:1608.08710. [Online]. Available:
http://arxiv.org/abs/1608.08710

[31] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Proc. NIPS, 2015,
pp. 1135–1143.

[32] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. CVPR, Oct. 2017, pp. 1389–1397.

[33] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. CVPR, Jun. 2018,
pp. 8697–8710.

[34] C. Liu et al., “Progressive neural architecture search,” in Proc. ECCV,
2018, pp. 19–34.

[35] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. CVPR, Jun. 2019, pp. 2820–2828.

[36] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” 2019, arXiv:1905.11946. [Online]. Available:
http://arxiv.org/abs/1905.11946

[37] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and effi-
cient object detection,” 2019, arXiv:1911.09070. [Online]. Available:
http://arxiv.org/abs/1911.09070

[38] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slim-
mable neural networks,” 2018, arXiv:1812.08928. [Online]. Available:
http://arxiv.org/abs/1812.08928

[39] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in Proc. CVPR, Oct. 2019, pp. 1803–1811.

[40] T.-W. Ke, M. Maire, and S. X. Yu, “Multigrid neural architectures,” in
Proc. CVPR, Jul. 2017, pp. 6665–6673.

[41] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. Torr, “Res2Net: A new multi-scale backbone architecture,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662,
Feb. 2021.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

QIU et al.: SlimConv: REDUCING CHANNEL REDUNDANCY IN CNNs BY FEATURES RECOMBINING 6445

[42] D.-P. Fan, W. Wang, M.-M. Cheng, and J. Shen, “Shifting more
attention to video salient object detection,” in Proc. CVPR, Jun. 2019,
pp. 8554–8564.

[43] J. Qiu et al., “DeepLiDAR: Deep surface normal guided depth prediction
for outdoor scene from sparse LiDAR data and single color image,” in
Proc. CVPR, Jun. 2019, pp. 3313–3322.

[44] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
ECCV, 2018, pp. 286–301.

[45] P. D. M. Fernandez, F. A. G. Pena, T. I. Ren, and A. Cunha, “FERAtt:
Facial expression recognition with attention net,” in Proc. CVPRW,
Jun. 2019, pp. 1–10.

[46] F. Wang et al., “Residual attention network for image classification,” in
Proc. CVPR, Jul. 2017, pp. 3156–3164.

[47] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. ECCV, 2018, pp. 3–19.

[48] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. ECCV, 2016, pp. 525–542.

[49] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009, p. 7,
vol. 1, no. 4.

[50] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More
features from cheap operations,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 1580–1589.

[51] Q. Zhang et al., “Split to be slim: An overlooked redundancy
in vanilla convolution,” 2020, arXiv:2006.12085. [Online]. Available:
http://arxiv.org/abs/2006.12085

[52] S. Guo, Y. Wang, Q. Li, and J. Yan, “DMCP: Differentiable Markov
channel pruning for neural networks,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1539–1547.

[53] Z. Huang and N. Wang, “Data-driven sparse structure selection for
deep neural networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 304–320.

[54] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11264–11272.

[55] Z. Liu et al., “MetaPruning: Meta learning for automatic neural network
channel pruning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 3296–3305.

[56] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal SGD for pruning
very deep convolutional networks with complicated structure,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4943–4953.

[57] X. Ding, Y. Guo, G. Ding, and J. Han, “ACNet: Strengthening
the kernel skeletons for powerful CNN via asymmetric convolution
blocks,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1911–1920.

[58] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle
filter pruning for destructive CNN width optimization,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 1607–1616.

[59] J. Gu et al., “Projection convolutional neural networks for 1-bit CNNs
via discrete back propagation,” in Proc. AAAI Conf. Artif. Intell., vol. 33,
2019, pp. 8344–8351.

[60] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning
for efficient convolutional neural networks,” in Proc. AAAI Conf. Artif.
Intell., vol. 32, 2018, pp. 1–8.

Jiaxiong Qiu (Student Member, IEEE) received
the bachelor’s degree from Dalian Maritime Univer-
sity in 2017. He is currently pursuing the master’s
degree with the University of Electronic Science and
Technology of China. His research interests include
computer vision, computer graphics, robotics, and
deep learning.

Cai Chen (Student Member, IEEE) received the
B.E. degree in network engineering from the Uni-
versity of Electronic Science and Technology of
China (UESTC) in 2019. He is currently pursuing
the master’s degree with the School of Information
and Communication Engineering, Institute of Image
Processing, UESTC. His research interests lie in
computer vision, computational photography, and
3D scene perception.

Shuaicheng Liu (Member, IEEE) received the B.E.
degree from Sichuan University, Chengdu, China,
in 2008, and the M.S. and Ph.D. degrees from
the National University of Singapore, Singapore,
in 2010 and 2014, respectively. Since 2014, he has
been an Associate Professor with the School of
Information and Communication Engineering, Insti-
tute of Image Processing, University of Electronic
Science and Technology of China (UESTC). His
research interests include computer vision and com-
puter graphics.

Heng-Yu Zhang received the master’s and Ph.D.
degrees from the West China Medicine School,
Sichuan University, in 1996 and 2010, respectively.
From February 2008 to February 2009, he was a Vis-
iting Scientist with the School of Medicine, National
University of Singapore. Since 2021, he has been the
Director of the West China Syncope Center, where
medical images are heavily involved. He is currently
a professor with the school and the Deputy Chief
Physician of the West China Hospital, engaging
cardiac pacing, electrophysiology, and pacemaker

implantation with international leading level.

Bing Zeng (Fellow, IEEE) received the B.Eng. and
M.Eng. degrees in electronic engineering from the
University of Electronic Science and Technology of
China (UESTC), Chengdu, China, in 1983 and 1986,
respectively, and the Ph.D. degree in electrical engi-
neering from the Tampere University of Technology,
Tampere, Finland, in 1991. He was a Postdoctoral
Fellow with the University of Toronto from 1991 to
1992 and as a Researcher with Concordia University
from 1992 to 1993. He then joined The Hong Kong
University of Science and Technology (HKUST).

After 20 years of service at HKUST, he returned to UESTC in 2013,
through China’s 1000-Talent-Scheme. At UESTC, he leads the Institute of
Image Processing to focus on image and video processing, 3D and multiview
video technology, and visual big data. During his tenure at HKUST and
UESTC, he has graduated over 30 master’s and Ph.D. students, received about
20 research grants, filed eight international patents, and authored or coauthored
over 250 articles. He received the Class Natural Science Award (the first
recipient) from the Chinese Ministry of Education in 2014 and elected as an
IEEE Fellow in 2016 for contributions to image and video coding. He was the
General Co-Chair of IEEE VCIP-2016, Chengdu, in 2016. He served as an
Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY for eight years and received the Best Associate
Editor Award in 2011. He is currently on the Editorial Board of the Journal of
Visual Communication and Image Representation and serves as the General
Co-Chair of PCM-2017.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 28,2021 at 01:03:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

